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Lattice dynamics of three-dimensional quasi-crystals 

J Los and T Janssen 
Institute for Theoretical Physics, University of Nijmegen, 6525 ED Nijmegen, The 
Netherlands 

Received 29 May 1990 

Abstract. The density of states (DOS) is calculated for a three-dimensional Penrose 
tiling with icosahedral symmetry by taking two different approximations, the cluster 
approximation and the commensurate approximation. It is compared with the DOS 
for a model of the icosahedral phase of Al-Mn-Si (i-AlMnSi) in the cluster approx- 
imation. At low frequenties the DOS contains pseud-gaps. The spectrum possesses 
scaling properties. The global contours of the DOS for i-AlMnSi are in reasonable 
agreement with the experiments. 

1. Introduction 

In 1984 Shechtman e t  a1 [l] found a diffraction pattern with sharp spots in combination 
with icosahedral point group symmetry by doing measurements on a rapidly cooled 
A1-Mn alloy. Since then other compounds with similar properties have been found. 

This amazing fact implied a new kind of problem for solid state physicists: to  
determine the structure as well as to  deal with the physical properties of these struc- 
tures, such as the dynamics and the electronic behaviour which, although ordered, are 
not lattice periodic. Here we will consider the lattice dynamics. 

Concerning the structure, most people working on the subject seem to agree that  
the structure of i-AlMnSi is related to  a three-dimensional icosahedral quasi-lattice, 
and therefore this structure is called a quasi-crystal. A quasi-lattice is not periodic, 
but so-called quasi-periodic. Connecting the vertices of this quasi-lattice in a suitable 
way one gets a non-periodic packing of a finite number of cells or ‘tiles’, which is called 
a Penrose tiling (PT) [2-41. There are several methods to  construct Penrose patterns: 
the deflation rule method [5,6], the projection method [7,8], the section method [9,10] 
and the general dual method [ll]. In this paper we will use the section method, which 
consists of taking the intersection of a periodic structure in a higher-dimensional space 
(superspace) with the normal space of the PT we are looking at .  

The problem we are faced with when dealing with the lattice dynamics of quasi- 
periodic structures is that  we have an infinite number of coupled equations of motion. 
Although it  is possible to make a Bloch ansatt by making use of the superspace 
translational symmetry in a similar way as was done by Janssen [12] for modulated 
structures, this does not reduce the number of coupled equations to  a finite number, 
as is the case in ordinary crystals, because in superspace we have instead of point 
atoms ‘atomic surfaces’, which in fact contain an infinite number of point atoms. In 
other words, the unit cell in superspace contains an infinite number of atoms. Still 
a PT is very well ordered, but until now no one has succeeded in using this order to  
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simplify drastically the problem of finding the lattice vibrations. We will have to make 
approximations. One possibility is to make the number of equations of motion finite. 
This can be done in two different ways. 

(i) The commensurate approximation, i.e. deformation to a periodic structure. In 
general one can make successive approximations which are better and better having 
more and more atoms in the unit cell. By comparing successive approximations we 
can look for the limit of the density of states (DOS) or the integrated density of states 
(IDOS). 

(ii) The cluster approximation. Here also we can look to the convergence of the 
DOS by comparing the DOS for clusters of different size, i.e. with more and more atoms. 

Of course comparison of the results of both approximations might give information 
about how accurate they are. 

The outline of this paper is as follows. In section 2 we discuss briefly the way how 
the three-dimensional PT (3DPT) is constructed by using the section method. Then 
we use this PT to construct a simple dynamical model taking a spring potential. In 
subsection 2.1 the cluster approximation is discussed and the DOS is presented for 
different sizes of the cluster, different boundary conditions and different choices of the 
spring constants. In subsection 2.2 we show how commensurate approximations can 
be made by making use of the superspace description. The DOS is given for three 
successive approximations. Next we analyse the fractal properties of the spectrum by 
a method that was formulated by Kohmoto [13], who introduced an entropy function 
describing the behaviour of the bandwidths for successive periodic approximations. In 
section 3 we say something about the structure of i-AlMnSi as proposed by Janot et 
a1 [14] and we use this structure to calculate the DOS in the cluster approximation 
using a Lennard-Jones potential. Finally, we give some concluding remarks. 

2. Structure and dynamics of an icosahedral PT 

The icosahedral 3DPT can be found by taking the intersection of a periodic structure 
in a six-dimensional space V,  with a three-dimensional subspace V, (external space). 
The basis in V, can be chosen as hypercubic: 

where a is a lattice constant, which we choose to be equal to 1 for simplicity, and 4 
the golden rule, i.e. 4 = (&+ 1)/2. 

The first three components of these vectors are in the normal space VE, the last 
three in the internal space V,, which is perpendicular to VE. So we have: 

= v E @ X .  

When we project the six-dimensional hypercubic unit cell on V, we get a three- 
dimensional ‘surface’, the triacontahedron. A six-dimensional periodic structure is ob- 
tained by attaching such a triacontahedron to each lattice point of the six-dimensional 
lattice perpendicular to  VE , the centre of the triacontahedron coinciding with the lat- 
tice point. 
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The intersection of this structure with a three-dimensional subspace parallel to 
VE is a SDPT, containing two types of tiles, a prolate rhombohedron and an oblate 
rhombohedron (see figure 1 (a ) ,  (6)). When the three-dimensional subspace parallel to 
VE contains a lattice point of the six-dimensional lattice, the PT has almmt icosahedral 
point group symmetry, this lattice point being the centre of symmetry. That the 
icosahedral symmetry is not complete is due to the fact that one of two opposite 
boundaries of the triacontahedron is excluded in the six-dimensional structure. 

Figure 1. The 'tiles' of the SDPT: the prolate rhombohedron ( a )  and the oblate 
rhombohedron ( b ) .  The distances are a = 1.070, c = 1.902 and d = 2.000. The 
other distance, ie b = 1.236, which occurs in the 3 D P T  comes from placing the 'tiles' 
together in the righi way. 

Once we have the quasi-lattice we place an atom with mass m=l  in each vertex. 
Connecting neighbouring atoms by harmonic springs we get the following expression 
for the total potential energy: 

- i i ' ( i )  

where Ci,(i) means summation over the neighbours of i, aiil the spring constant of 
the spring between atom i and i', ui the displacement of atom i from its equilibrium 
position and Fiil a unit vector in the direction of the line connecting the equilibrium 
positions of both atoms. 

As neighbours we have taken all pairs of atoms with an equilibrium distance equal 
to  1.070, 1.236, 1.902 or 2.000, which are the four shortest distances occurring in the 
3DPT. The interaction between other pairs is taken to be zero. Figure 1 shows where 
those distances occur with respect to  both rhombohedra. 

The relevant quadratic term of @ is given by: 

1 (:I :) U j a  
quadratic term = - u j I a l d 2 )  

j r a l  j a  2 (3)  

where u ja  is the displacement of the j t h  atom in the a t h  direction and 

The equation of motion is given by 
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Substituting uja = cjaeiWt we get the following infinite eigenvalue problem: 

2.1. Cluster approximation 

To reduce the number of coupled equations to  a finite number, so that  we can solve 
the eigenvalue problem (6), one possibility is to  take a cluster of the 3DPT with a finite 
number of atoms. We can do this either by taking free boundary conditions or fixed 
boundary conditions. A free boundary means that there is no interaction between the 
atoms a t  the boundary and anything outside the cluster. A fixed boundary means 
that  the cluster is embedded in the infinite system, but in that case the displacements 
of atoms outside the cluster are just equal to  zero. 

Furthermore, we enforce the cluster to  have icosahedral symmetry just by including 
all boundaries of the triacontahedron in the six-dimensional structure. This hardly 
violates the original 3DPT and it has been checked that it does not produce too small 
neighbour distances. Then we know that the eigenstates transform according to  the 
irreducible representations of the icosahedral group. By using a symmetrized basis we 
can uncouple the set of equations, leaving us to  solve an eigenvalue problem for each 
irrep. The order of these eigenvalue problems are of course much smaller than the 
order of the dynamical matrix for the total system. Regarding the finiteness of the 
computer storage capacity this is a very useful fact. 

Another useful fact is that the irreducible components of the dynamical matrix, 
apart frorn being real and symmetric, are also band matrices, the bandwidth being 
about one quarter of the order of the matrix blocks. This is due to the fact that  
there is no interaction between atoms with an equilibrium distance bigger than 2.0. 
Although the matrix elements of these irreducible blocks do not describe the coupling 
between atoms, but the coupling between orbits of atoms, i t  is still true that 2 orbits 
for which the difference in distance to  the centre of the cluster, which is the symmetry 
centre, is bigger than 2.0 do not couple. 

Figures 2(a) ,  ( b )  give the DOS for clusters of, respectively, 7895 and 16009 atoms 
with free boundary conditions and all spring constants equal to  one. Figure 3 gives 
the DOS for a cluster of 7895 atoms with fixed boundary conditions. (All aii l = 1.) 
Figures 4(a) ,  ( b )  give the DOS for clusters of 7895 atoms with free boundary conditions 
where the spring constants for the two smallest neighbour distances are taken to  be 2 
and 3 respectively. The other two spring constants are taken to be equal to  one. 

In these figures the units on the frequency axis are arbitrary. 
From figure 2 one can conclude that,  although the global contours are about the 

same for both clusters, there is a lot of difference in the fine structure, so that one 
cannot decide which peak will occur for the infinite PT. The same remark holds when 
we compare the figures 2 and 3.  We also remark that the left shoulder in the DOS 
in the case of free boundary conditions is somewhat higher then in the other case. 
Comparing figures 4(a)  and 4(b) we can say that some peaks remain while others 
disappear or are moved when we vary some of the spring constants. 

Another interesting feature is the behaviour a t  low frequencies. Will there be gaps 
for an infinite system? Or will the behaviour become smoother and smoother, converg- 
ing to  a normal w2 behaviour when we take bigger and bigger clusters? We will come 
back to  this point when we discuss the results of the commensurate approximation. 
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Figure 2. The DOS for clusters of the 3 D P T  with 7895 (U) and 16009 (b)  atoms for 
free boundary conditions and all spring constants equal to one. 
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FREQUENCY 

60 

Figure 3. The DOS for a cluster of the 3 D P T  with 7895 atoms for fixed boundary 
conditions and all spring constants equal to one. 

2.2. Commensurate approximat ion 

A commensurate approximation of the 3DPT can be obtained by taking for q5 in the 
set of basis vectors (1) a rational approximant 4n ,  This can be done by taking two 
successive numbers of the Fibonacci-sequence: 

where fo = fl = 1 and fn+l = fn + fn- l .  
As in the former case the six basis vectors with 4 replaced by q5n span a six- 

dimensional space V,  which again is the orthogonal sum of two three-dimensional 
spaces, VE and V,, attached to respectively the first and the last three components 
of those basis vectors. When we take a three-dimensional subspace of V,  parallel to  
VE passing through a lattice point of the six-dimensional lattice it automatically will 
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Figure 4. The DOS for a cluster of the 3DPT with 7895 atoms for free boundary 
conditions. The spring constants for both biggest neighbour distances are taken equal 
to one, and those for both smallest neighbour distances are taken equal to two (a) 
and three ( b ) .  

contain other lattice points occurring periodically in three independent directions. 
This defines a periodic lattice in three dimensions. A basis of this lattice depends on 
n and is given by 

showing that the commensurate approximation has cubic lattice periodicity. 
To find the positions of the atoms in the unit cell we might proceed in the same way 

as we did to  find the original structure, i.e. attach to  each lattice point of the changed 
lattice the projection of the unit cell of this lattice on V, and take the intersection with 
V - .  However we want the periodic approximation to  be a deformation of the original 
PT, and therefore we determine the positions of the atoms as follows. 

The original positions of the atoms are given by integral (not all!) linear combi- 
nations of the following six vectors: 

The positions in the commensurate approximation are found by taking the same 
integral linear combination but with 4 replaced by 4,. Of course we only need to  know 
the positions inside the unit cell, for which the edges are given by u(ln), u p )  and up’ .  
We remark that  both methods of determining the atomic positions are not equivalent. 
The number of atoms inside the unit cell N,(n) as a function of the approximation, 
using this method, is given in table 1. 
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Table 1. 

9559 

4" 211 312 513 815 1318 

No(n) 135 565 2506 10313 44 359 
N l ( n )  136 576 2440 10336 43 784 
Nz(n)  136 576 2440 10336 43785 

Analytically the number of atoms inside the unit cell as a function of the approx- 
imation is given by 

where yen (n )  is the volume of the unit cell and Va,(n) the mean volume per atom. 
For the section method one can derive that 

where V, cell(n) is the volume of the unit cell in superspace and Kr ia(n)  the volume of 
the deformed triacontahedron both as function of the approximation we are consider- 
ing. Expressing these quantities in terms of f, and one finds 

An approximation for the number of atoms per unit cell is given by 

where c = d3 and No is a constant to be fitted. That this is a rather good approxi- 
mation can be understood by realising that the original structure scales with scaling 
factor d3. 

In table 1 N,(n)  and N,(n) are given as a function of the approximation. 
In the commensurate approximation the icosahedral point group symmetry is lost, 

but there is still symmetry left which is the tetrahedral group plus inversion, T,. Here 
again we have to include all the boundaries of the deformed triacontahedron, otherwise 
we have no symmetry at  all. For the total symmetry group we distinguish between 
two cases. 

(i) When f,+f,-l is odd, the total symmetry group consists of lattice translations 
R = m l a p )  + m2aP' + m3ap) (mi integer) and elements of the point group T,. 

(ii) When f, + f,-l is even, there is an additional symmetry element, which is the 
translation t = 1/2(ain) + a?) + a?)). 

Whereas in the original tiling only two tiles occur, in the periodic approximation 
more than two tiles occur, due to the deformation. Remark that the rhombohedra are 
the projections of the three-dimensional boundaries of the six-dimensional hypercube. 
These projections will in general not all be equal to one another. This depends on the 
orientation of the subspace with respect to the hypercube. For the original tiling the 
orientation is such that only two tiles occur, but for the commensurate approximation 
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the orientation is slightly different. This means that more neighbour distances occur. 
For the commensurate approximations up to 4 = these distances are: 

4, = 2/1 : 2.000; 2.236; 2.449 
4, = 3/2 : 0.866; 1.118; 1.803; 1.871; 2.000; 2.062 
4, = 5/3 : 1.054; 1.158; 1.333; 1.945; 2.000; 2.054. 

In the limit of rz - cm these distances converge to the four distances occurring in the 
orginal tiling. 

For the displacement of the atoms we can now make a Bloch ansatz: 

unia = cia exp[i(kn - ut)] (14) 

where unia is the displacement in the CY direction of the ith atom in the n t h  unit cell. 
Substituting this ansatz in (5) leads to 

where 

is k-dependent, but finite dimensional. 
To find all eigenstates we can restrict ourselves to k-vectors inside the first Bril- 

louin zone. We have determined the eigenvalues for commensurate approximations 
up to 4, = 5/3 for special k-points, namely those for which the symmetry of the 
dynamical matrix is T,, i.e. IC, = o and k ,  = ( r / u ) ( l ,  l , l ) ,  or D,, (order 8), i.e. 
k ,  = (r/u)(l ,O,O) and k ,  = ( r / a ) ( l ,  1 , O )  and symmetry related k-points. For other 
k-points the symmetry group has order smaller than eight and, at  least in the case of 
4 = 5/3, the irreducible matrix blocks are too large to handle. 

Figures 5 (U)-(c) show the DOS for respectively 4 = 2/1, 4 = 3/2 and 4 = 5/3 . 
All spring constants adit were taken to be one. Figure 6 gives the integrated density 
of states (IDOS) for the cluster approximation (7895 atoms) and the commensurate 
approximation (4 = 5/3). All aid, = 1. 

Comparing the results of the cluster approximation with those of the commensu- 
rate approximation it seems that the DOS is converging, but it is clear that the limit 
has not been reached yet. The fine structure of the spectrum for the infinite system 
remains uncertain. Another remarkable feature is the relative high left shoulder in the 
DOS of the cluster approximation with respect to the commensurate approximation. 
This difference also comes out quite clearly in the IDOS. 

Another result is that all branches which occur in the commensurate approxima- 
tions do have overlap with one or more other branches. In other words there are no 
gaps. 

To investigate the low-frequency behaviour we can take some further steps. We 
approximate each branch by a hyperplane in the four-dimensional ( U ,  k)-space passing 
through the four (ws(ki), kj)-points (i = 1 . . .4)  belonging to the same branch. Having 
done this we can determine the density of states D(w)  by analytic integration: 
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Figure 5 .  The DOS for commensurate approxi- 
mations of the 3DPT with 4 = 2/1 (a), 6 = 3/2 
( b )  and q5 = 5/3 ( c ) .  All spring constants equal 
to one. 

,o 

where E, means summation over all branches, J,, means integration over the surface 
of constant w and 7i a unit vector normal to  this surface. 

Figure 7 shows the DOS a t  low frequencies for the three commensurate approxi- 
mations calculated using the above method. 

We see a couple of deep minima occurring in the curves which are called pseudo- 
gaps. 

For one-dimensional quasi-periodic structures it has been shown by several peo- 
ple for various models that  the spectrum possesses scaling properties [15-181. To 
investigate the scaling behaviour of our three-dimensional model we will use a pseudo- 
thermodynamical formalism, which was introduced by Kohmoto [13]. 

Let us say that  for a certain commensurate approximation the spectrum contains 
N branches. We define the width Ai ( i  = 1.. . N) of these branches as follows: 

Ai = max{wi} - min{wi} (18) 

where max{wi} and min{wi} are respectively the maximal and minimal frequency in 
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40 

Figure 6. The integrated density of states (IDOS) for the 3 D P T  in the cluster 
approximation (broken curve) and the commensurate approximation with 4 = 513 
(full curve). All spring constants equal to one. 
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0.00 0.26 0.60 0.76 1.00 
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Figure 7. The DOS for low frequenties for three successive commensurate approx- 
imations using a linear approximation for the branches. Dotted curve: 4 = 211; 
broken curve: 4 = 312;  full curve: C$I = 513. 

the set of four frequencies belonging to the four k-points mentioned above. Remark 
that these frequencies are not necessarily the minimal and maximal frequencies of the 
whole branch. 

Now suppose that these bandwidths scale for successive commensurate approxi- 
mations and let us define a scaling index ti for Aj by 

ti = - ( l /p) lnAi (19) 
where p labels the successive commensurate approximations. 

A suitable choice for p is 
In 3 Np 

p =  - 
In c 
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where Np is the number of atoms in the unit cell, 3Np the number of bands and c = 43. 
An entropy function S(E) is defined by 

where n(E)dc is the number of bands whose scaling index lies between E and dc. 
From equation (21) we can see that p indeed has to be proportional to ln3Nn to 

make that S(E) is a function which might converge when we take successive approxi- 
mations. If so, this is an indication that the spectrum has scaling properties. If in the 
limit of p tending to infinity the support of the S function is just one point this means 
that the spectrum is either absolute continuous corresponding to extended states or a 
point spectrum corresponding to  localized states. 

Furthermore, as in the formalism of statistical mechanics, a ‘partition function’ 
and a ‘free energy’ are introduced as follows: 

I d 

The functions S(f) and F ( P )  are related by the following Legendre tranformation: 

with 

By numerically differentiating F ( P )  one can pick up an e and calculate the correspond- 
ing s ( ~ ) .  

Figure 8 shows this entropy as a function of E for the commensurate approximations 
with 4 = 2/1, 4 = 3/2 and 4 = 5/3. 

Comparing the entropy functions for the three commensurate approximations it 
seems that convergence takes places, which means that the spectrum indeed possesses 
scaling properties. Furthermore we see that the support of the function is not just 
one point but an interval, which is an indication that the spectrum is so-called sin- 
gular continuous. In that case the eigenstates are neither extended nor localized but 
something in between. However, we only have three approximations and it might be 
early to  draw any conclusions. 

3. The DOS of i-AIMnSi 

The structure of i-Al,Si,Mn,, may be possibly seen as a decorated icosahedral 3DPT. 
As decoration various propositions have been made. Here we will take the structure 
as proposed by Janot et a1 [14]. 

In this structure the atoms occur at the vertices (merely Mn atoms), the long 
diagonals of the faces (A1 atoms) and only for the prolate rhombohedra at one of the 
body diagonals (A1 atoms). Some of the positions have an occupation probability less 
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Figure 8 .  The entropy function S(e), describing the distribution of scaling indices 
E for the spectrum of the 3DPT in the commensurate approximations with 4 = 2/1 
(dotted curve), 4 = 3/2 (broken curve) and 4 = 5/3 (full curve). 

than one. So to  calculate the DOS one has to average over all configurations. This 
however would take too much computer time and, realising that not all configurations 
do have icosahedral point group symmetry, too much storage space. However, only 
a small number of the positions do have an occupation propability less than one and 
therefore we just do the calculation for one cluster with a ‘reasonable’ configuration, 
having icosahedral symmetry. 

As neighbours we take atoms with an equilibrium distance less then 4.85 A. The 
shortest neighbour distance is 1.594 A. 

Instead of a spring potential we used a Lennard-Jones potential, which is more 
realistic in the sense that differences in neighbour distances are taken into account in 
a natural way. Such a potential has been succesfully applied to amorphous alloys by 
Hafner [19]. 

where rii’ = r i  + ui - Ti, - ui,. 
It can easily be shown that the minimum of the pair potential Qii, is equal to  

-B?!,/4Aiil occurring at  lriilI = (2Aiij/Bii1)1/6. In our model the well depth was 
taken to  be 4.2 mRy for each pair occurring at  the equilibrium distance and this 
determines the values of Aid’ and Bii,. 

The value of the well depth was chosen such that the range of the calculated 
energies was in good agreement with the results of neutron scattering experiments. 
See for example the neutron scattering study of the vibrational density of states in 
icosahedral and crystalline AlMn by Miceli e2 a1 [20]. 

Figure 9 shows the DOS for a cluster with 1489 Mn and 5990 A1 atoms. 
It should be interesting to compare this result with the result of the same calcu- 

lation for the crystalline phase, which still has to  be done. 
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Figure 9. The DOS for an icosahedral cluster (7479 atoms) of i-AlMnSi using a 
Lennard-.Jones potential with well depth equal to 4.2 mRy for each neighbouring 
pair. 

4. Concluding remarks 

We have investigated the lattice dynamics of models for icosahedral quasi-crystals. 
Several approaches to  this problem were compared. 

The cluster and commensurate approximations to  models with harmonic springs 
give essentially the same density of states. In the cluster approximation the effect of 
boundary conditions seems to  vanish for increasing clusters. No sensitive dependence 
in these has been found. There is a clear dependence on the choice of the spring 
constants. Therefore the density of states was determined for a model structure for 
AlMnSi found in the literature using a Lennard-Jones potential. The result is in 
qualitative agreement with experiments. 

For low frequencies a global u2 dependence of the density of states is found, but 
with a complicated structure in top of that .  A further investigation of these low- 
frequency properties is in progress. 

A multifractal analysis does not show the typical behaviour of simple extended 
states. The entropy function seems to converge taking successive commensurate ap- 
proximations. The precise character of the modes still has to  be studied. 
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